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The Hamiltonian fomlalism is used to derive the equations of long waves on the surface of an infinite layer of water over a 
horizontal, smooth botl:om, talang into account second-order terms with respect to small parameters of non-linearity and dispersion; 
in other words, the Boussinesq equations of shallow-water theory are improved. A non-linear evolution equation is derived for 
the elevation of the free surface and a transformation is obtained to convert it into one of the higher-order Korteweg--de Vries 
(KdV) equations. Single- and double-soliton solutions are used to demonstrate the special features of the behaviour of the waves 
descn'bed by the equation, which are a more accurate version of KdV solitons. © 1997 Elsevier Science Ltd. All rights reserved. 

There have been :several publications [1-5] on the problem of incorporating higher-order terms into 
the theory of long waves on a water surface. In the present paper we derive an evolution equation 
describing arbitrary long waves travelling in one direction and we reduce that equation to canonical 
form. This equation has a large class of solutions, for example, of the type of solitons or finite-band 
solutions that do not reduce to the description of the interaction of rapidly oscillating waves. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

We will consider the potential motion of a wave over an infinite horizontal bottom. The water is 
assumed to be an ideal incompressible homogeneous liquid and has a depth h in the undisturbed state. 
We introduce a Cartesian system of coordinates (x, y, z) with unit vectors i, j, k, with the z axis directed 
vertically upward and z = O the undisturbed surface of the water. Let z = ~l(x, y, t) be the equation of 
the free surface. We will study long waves on the water surface, neglecting capillary and friction forces 
at the bottom. 

The velocity of long waves on the water surface in the linear approximation is ~/(gh), while for waves 
propagating in one direction the horizontal velocity is of the order of Tpl(gh)/h [6]. These statements 
yield suitable scales of the required functions on which all further discussion will be based. 

To analyse the dominant terms in the long-wave approximation, we define two small dimensionless 
parameters e and ~t as e = h2/% 2, IX ---- a/h, where X is the characteristic wavelength and a the characteristic 
wave amplitude. We will assume that e - Ix. We introduce dimensionless variables 

kt gaXtp ( 1 . 1 )  x--~ ~kx, y---> Xy, z---) hz, rl---> a'll, t - - -> -~ ,  tp---> 

With these assumptions, the water motion is described by the following equations in dimensionless 
form 

tpz z + e.Aq~ = 0 ,  - 1 < z < IX~ ( 1 . 2 )  

tpz =0, z = - I  (1.3) 

(1.4) 
2e z z 

~, + IXVrl. Vtp = tPz, z = lxrl (1.5) 
E 
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(A= 02 02 i ~-~+ j /) 
5V+ v= G) 

where ~p is the velocity potential. Equation (1.2) follows from the Laplace equation for the velocity 
potential, Eq. (1.3) represents the impermeability of the bottom, and Eqs (1.4) and (1.5) are the 
Cauchy-Lagrange integral and kinematic condition on the free surface of the water, respectively. It 
can be verified that the order of ~Pz in (1.4) and (1.5) is e. 

2. DERIVATION OF THE FUNDAMENTAL EQUATIONS 

A solution of Eq. (L2) satisfying boundary condition (1.3) will have the form of a power series 
[7, 8] 

( -1)nea(z+l )2nAnf  ~ o  

tp(x ,y ,z , t )= Z (2.1) 
n=o (2n)! 

wheref  = 9(x,y,  z = -1,  t) is the value of the velocity potential of the water at the bottom. Henceforth 
we include in the equations only terms of orders 1, e, ~ ~2, ~t 2 and ~ that is, we limit ourselves to accuracy 
O(e2, g2). Denote the velocity potential at the free surface by O, that is, • = ~(x, y, z = srq, t). Then, 
by (2.1) we see that to within O(e 2, It 2) 

f = * + 2 ( l +  2 Bll)AO + 52-~-- A2 * (2.2) 

Substituting (2.1) into (1.4) and (1.5), and using (2.2), we obtain the equations 

"qt + div[(l + g~])V~]+ 3A[(I + 3g'q)a~]+ A30 =0 (2.3) 

where the divergence is expressed in terms of (x, y). 
Thus, the functions 11 and • satisfy Eqs (2.3) and uniquely define the motion of the free surface. It 

has been shown [9] that ~ and tb are canonical variables in the Hamiltonian description of waves on 
the water surface in the exact formulation; in other words, the motion of the free surface is described 
by the following equations in Hamiltonian form 

8H 8H 
. . . .  (2.4) 

where the integral is evaluated over the entire infinite volume of water. It can be shown using (1.2), 
(1.3), (2.1) and (2.2) that the Hamiltonian H can be transformed to 

H = I S S dxdy['q2 " ~ (  I + B'q)AO - BCPVCp. V'q -3CpA  2~p - 

- ~ A ( ~ A O )  - & g2¢~A3t[~15 + O(g3' £3 )] 

Computing the variation of H, we again obtain Eqs (2.3) from (2.4). 
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The system of equations derived in [10] for the potential at the free surface and its elevation up to cubic terms, 
unlike Eqs (2.3), was derived without any assumption as to the order of the characteristic scale of variation of the 
solution. This was done by introducing a special pseudodifferential operator. Benney's system for describing the 
interaction of four monochromatic waves was then extended to the case of a rough bottom and an arbitrary 
dependence of the initial wave form on the Cartesian coordinates, using the multidimensional WKB method 
(Maslov's operator methed yields a global asymptotic expansion of rapidly oscillating solutions including caustic 
surfaces). In principle, Eqs (2.3) could have been obtained from system (3) of [10] by postulating a relationship 
between the dispersion and non-linearity parameters. Such an approach, however, would have been more 
complicated than that used in this paper. 

Henceforth we will confine ourselves to the one-dimensional case, which represents long waves 
propagating in a straight channel with a smooth bottom. This means replacing V by ~/& and A by i~'/ar'. 

Putting V = Ox, we obtain from (2.3) 

V, +fix +~tWx - ~ v ~ v ~  =0 

e .  2 2. rl, + V x + I.t(Vrl)" +"~ v,. u +.-~e. vxxr, * +lxe(VX'qx x + 2Vx, rlx + 'qV.~, )=  0 (2.5) 

Obviously, instead of Vone could introduce other variables characterizing the flow velocity, such as 
the velocity averaged over the depth, or the velocity at the bottom. The equations thus obtained are 
exactly similar to (12.5). This approximation has been justified for the shallow-water equations [8]. For 
that reason, Eqs (2.5) are asymptotically more accurate than the Boussinesq equations [7, 8], since the 
derivation incorlx)rates higher-order terms in the asymptotic expansions. We would expect that, 
compared with the Boussinesq equations, they may describe shorter and more intense waves. 

We can derive from (2.5) evolution equations for both V and 11, by considering waves propagating 
in one direction from a source. To that end, let us assume that the functions V and 11 are related as 
follows: 

V = 11 4- Cl~l~ 2 4" ¢2El~xx 4- ¢3~21~ 3 4- c4E21"lxxxx "4- c5121~I~2x d" c6~l~Tlx x (2.6) 

where the six constants c i are to be determined. Considering (2.6) as a compatibility condition for Eqs 
(2.5), we can uniquely determine the cis and obtain the following equation (an improved KdV equation) 

3 e 3~0 3 5 23 11, + ~l~Tlrlx +-~rlxxx + e2~xxxxx - laErl2rlx +-~laerlrlxxx +T~ta~qx~xx = 0 (2.7) 

where we have used the moving coordinateX = x - t .  An evolution equation for Vis obtained in similar 
fashion. 

It turns out that there is a transformation that converts (2.7) into a completely integrable higher- 
order KdV equation, to within the same accuracy as the derivation of Eq. (2.7). This will be discussed 
in Section 3. 

Incidentally, some of the results in [4, 5] are incorrect. First, the derivation of the system of equations 
of type (2.5) does not take all terms of order g into account. Second, when deriving an evolution equation 
from that system, it was assumed that 

V =q+I.tA +F_,B+I, lgC +E2D+I, t2E 

where A, B, C, D ;rod E are functiona#y dependent on 11, and in order to eliminate derivatives with 
respect to t, the rule; for differentiating composite funetionsAt = Anllt, Bt = BnTlt, etc. was used. However, 
in such cases of functional dependence, say B = 1/6Rw this ruleis no longer sufficient. It is therefore 
necessary to asstune a relationship of type (2.6), in which the functional dependences are explicitly 
represented. As that was not done in [4, 5], incorrect equations are obtained there for the elevation of 
the free surface TI. 
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3. THE R E L A T I O N S H I P  BETWEEN EQS (2.7) AND 
A H I G H E R - O R D E R  KdV EQUATION 

It is well known [11, 12] that, besides the KdV equation, there is a class of equations, which we call 
here the KdV class, with the following properties. First, every equation of the class possesses a 
Hamiltonian structure and may be written as 

ut = ~x  ~iu 

where h is the Hamiltonian of the given equation. Second, every Hamiltonian of the KdV class is an 
integral of motion for all the other equations of the class, and these integrals commute with one another 
relative to the Poisson bracket 

_ .  8 u  : o 

It is assumed, moreover, that the function u is rapidly decreasing, i.e. that it tends to zero sufficiently 
rapidly together with its derivatives as x --, -+**. All equations of the KdV class, except for the KdV 
equation itself, are called higher-order KdV equations. 

It can be shown that an equation 

u t + Euu x + Fux~ + A u , ~  + Bu2ux + Cta~x~ + Duxuxx = 0 

belongs to the KdV class if C E  = 2BF, 3CF = 5AE,  D = 2C. 
We now consider Eq. (2.7) in the class of rapidly decreasing functions. It is remarkable that the 

transformationt 

x 
rl = ~ + alE~xx + a21J.~ 2 + a 3 ~ X  J ~ (3.1) 

- - o o  

where al, a~ a3 are arbitrary constants of the order of unity, converts Eq. (2.7), accurately to within 
O(lx2, ~2), to the equation 

3 + 6E~XXX + 19^ £2~XXXXX + ( _ 3  + 3a3 + 3a2 )~t2~2~x + 
5 0 U  k 8 t4 

5 1 + 1-~7 - 3al + la3)la£~x~xx --- 0 (3.2) 
+ ( ~  +'2a3) IJ£~xxx (Z¢ +a2 

The convergence of the integral in (3.1) is guaranteed by the assumption that ~ is a rapidly decreasing 
function. A transformation of type (3.1) was first pointed out by Kodama [13] in connection with KdV- 
type matrix equations. 

Let us choose the constants al, a2, a3 so that Eq. (3.2) is a higher-order KdV equation. Solving a 
linear system of three equations for al, a2, a3, we determine them uniquely 

al = 1/2, a 2 -  2, aa = 3/4 (3.3) 

Thus, our problem of long-wave propagation on a water surface involves a higher-order KdV equation. 
It is obvious from (3.1) that the solution of Eq. (2.7) may be determined only to within O(~t, ~). Applying 
a scaling 

2 (3.4) 

we rewrite the higher KdV equation (3.2), (3.3) in standard form 

tit is erroneously stated in [3] that an equation of type (2.7) may be reduced to a higher-order KdV equation by (algebraic) 
point transformations. 
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qx + 6qqx + qzl.X + 31"~ (30q 2qx + qx;tX~t + 20qxqxx + l Oqqll.X) = 0 (3.5) 

The Cauchy problem for Eq. (3.5) with initial condition q(X, O) = qo(X), where q0(X) is a rapidly 
decreasing function, may be solved by the inverse scattering problem method [11, 12]. The components 
of the scattering 'matrix a(k, T), b(k, I") evolve in this case as follows: 

a(k,T) = a(k,O), b(k; T) = b(k,O)exp[8ik3T(1-~5 k2 )] 

where the initial data a(k, 0), b(k, 0) are determined by the asymptotic behaviour at 4-** of the solution 
of Sehr6dinger's ,equation with potential q0(X) 

Wxx +(qo +k2)~ =0 
~ (  X ) ~  e -ikX, X ~ -** 

¥( X)~ a(k, O)e -ikX + b(k, O)e ikx, X---> +o, 

4. SOLITONS ON WATER 

The simplest exact solution of Eq. (3.5) is the N-soliton solution, obtained for a reflection-less potential 
q (when b(k, 7) -- 0). This solution may be written as 

d 2 
q(X, T) = 2 ~ -  In det a (4.1) 

where A is a square matrix of order N with elements 

A,nn = 6,,tn + cm (T)Cn (T) exp[_(Xm + Xn )X] 
~m + Xn 

c,n(T,=c,n<O, exp[4xamT(l+19 x 2 
15 ")J 

~i,,m is the Kronecker delta, and Cm(0) and ×,n are positive constants. Returning to the original variable 
11 using (3.1), (3.3) and (3.4), we obtain the N-soliton solution of Eq. (2.7). The exact finite-band solutions 
are more complicated, as they are expressed in terms of the Riemann theta-function [11]. 

The single-soliton solution of Eq. (2.7) has the form 

l c t 2 g  sech 2 ~ + 3~2[ t  sech4 ~ + OQ.t 2 ) (4.2) rl(~) ¢tsech 2 + 

v 4e L k z 4u ) j 

where ¢t = 4x2/3g - 1 (the initial phase is omitted). The amplitude of the soliton (4.2) is t~ + 5/4~2g 
2 2 and its velocity in the moving system of coordinates is 1/2txg + 19/40t~ g .  Setting ct = 1 - 5/4g, we 

deduce from (4.2) that the velocity of a soliton with unit amplitude is 1/2g - 3/20~, which is less than 
the velocity of a KdV soliton, while the width of the soliton in the improved theory exceeds that of a 
KdV soliton. This result was obtained by a different method in [1], where only steady solutions were 
considered. It is remarkable that the velocities of the solitons in the single- and double-soliton solutions 
(4.1), according to the improved theory, are in excellent agreement with the experimental data in [14]. 

We wish to thank A. T. Irichev for drawing our attention to the paper by Kodama [13]. 
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